If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+1.8+20x=0
a = 4.9; b = 20; c = +1.8;
Δ = b2-4ac
Δ = 202-4·4.9·1.8
Δ = 364.72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-\sqrt{364.72}}{2*4.9}=\frac{-20-\sqrt{364.72}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+\sqrt{364.72}}{2*4.9}=\frac{-20+\sqrt{364.72}}{9.8} $
| 13–(2y+2)=2(y+2)+3y | | v+4=16 | | -15=-0.2m | | s/7+55=61 | | 5=w6.25 | | 5y-16=35 | | 3.32=3x | | g2+46g=0 | | 3(x+6)=(2x–8) | | 9x-2(5x-6)=20 | | x/2=1-×/4 | | 9q−12=42 | | 14m+5=65 | | 2.2x=5.5 | | 2(5+w)2w=34 | | j/4− 1=3 | | 3(n+7)+6n=3 | | (3x+2)=(x+1) | | x-42=64 | | 2^−3n⋅1/4=2^n+2 | | x=42-64 | | w/6+40=46 | | 3w–5=40 | | n4− 3=1 | | -24=3z-10+4z | | w/6+ 40=46 | | 14m+5=75 | | -3(11+3x)=21 | | x/98=21 | | 4p–6=30 | | n÷7=10 | | x/3+22=30 |